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Mission: Algorithms and architectures for energy-efficient, fault-tolerant, and secure design of embedded systems (cyber-physical systems),
mobile computing (smartphones, wearables, internet-of-things), and high performance computing (datacenters, supercomputers)

Memory Architectures

= Nearly all modern innovations depend on continued advances in Design of on-chip communication fabric is a very critical factor = Improvement in memory density, bandwidth, and form factor are
multicore system-on-chip computing performance influencing multicore chip performance, power, and reliability critical for next generation multicore computing chips
= Major impact on innovation across application domains: automotive, defense, = NoCs have replaced on-chip buses, but face chaIIenges - z;;:lfiﬁt(i)égl’rlﬁreegsiéng:tzt?eel/e)rlnjzgge;r]odmh:r;sr:rer? rclzgtl\?vgfkr/eachoeurgz, Sg};g\év&r;g graphics

medical, multimedia, telecommunications, aerospace, mobile/cloud computing = High packet transfer latency with increasing core counts

= High susceptibility to transient (soft) and permanent (aging/hard) faults
= Need to balance multiple goals while satisfying design constraints

= Challenges:
= How to scale memory component density?
= How to increase bandwidth and reduce latency?
OM-CHIF COMMUNICATION . . .
ARCHITECTURES el = How to best manage power dissipation/energy?

New 3D DRAM architectures

@ Package Ball DRAM
® Microball for TSV Die-Stack

= Fault-tolerant NoC protocols and adaptation
= Reliable NoC packet routing algorithms
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. OE+IQE: hybrlq multiple turn-moelel routlng algorithm for 2D NoCs " e B = Decomposed (folded) bank architecture
n ANP-First: hybnd turn'mOdel I’OU'[Ing a|gOI‘Ithm fOI‘ 3D NOCS Processing Element [T;‘E{'cl?'yf'fl - - L D -y n Sp“t bank and rank across |ayers (3D_ProWiz)
= Fault vulnerability aware NoC optimizations o = w”_Fﬁ»ﬁ——E—é;‘— = |mproved performance over state-of-the-art DRAMs orited Circut
oy . . Output Controller || i ¢ . rinted Circui
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fabrication technologies today faces several challenges = NoC architecture optimization A- el e B
= High power/energy dissipation that increases costs and limits achievable performance = Roce-Bush NoC router for 3D NoCs __ T ! I - O
= Process, voltage, and thermal variations that cause uncertainty and high time-to-market = Routing algorithm-aware decomposition of NoC router . B -
» Increasing susceptibility to transient and permanent faults that reduces deS|gn reliability = Memory- and application-aware NoC prioritization N e O ] 7 S
. P 1o ggg, FOMEr density : . » Heterogeneous NoC scheduling with anti-starvation support X : T T N I B I I =
i : ) Roce-Bush router has ~5% lower power and Bk partion on |, 0 bos  smked  mwc  row  cooms  omam 3 meree
= Photonic NoC architectures 25% higher performance vs. state-of-the-art T i ST ’ e Lm T
B = Speed of light latency, low power, high throughput -
| = Scale much better than traditional electrical wires! e = New non-volatile RAM (NVRAM) architectures ____Onelogical bank (striped across 8 physical chips) __
0. = Challenges: d 110km = DyPhase phase-change memory (PCM) architecture [ =TT e e e
- _ = Photonic crosstalk Detector A e = Partial SETs to improve write latency OUCD | 9000 | 0290 || @acd | [y (doud | |0ad | (dcad (| odog
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: : = Thermal variations Laser source e _ i | " High data retention/density/reliability Amplitude One POV Rank/DIVMING CP = Charge Pumps
Need new computer-aided design (CAD) tools to perform - Topology design L, Phoonicuauegide 50-100cm TofFrom Memary Controller
. : . . . : . . . : — —— Ship & Chin . I | After Retention | TN |  After One RESET Pulse GST Meltin -
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= Novel CAD tools for emerging 2D/3D multicore chip design = Off-chip interfacing T it s [ pe— = P s v U Array
. . . . . . 1 . ata I i ~30000) 0 |/ \\y8 B
= Design-time algorithms for core/memory/network selection and configuration = Solutions: _ _ o 2 2010 2015 2 RowDsta-VALD  RowDsta-INVAUD RowisRefreshed  hasollp \ EST
. . . . . . . ue to Resistance Drift of p ells ow Data - »
= Run-time algorithms to map computation, communication, and data on the chip die = New |2:D/ 3D photonic No(l: archrteTtt_ulres A A A A A A A Adn, A A A fow Data - VALID T T T puration
. . - . . | - - -
= Co-optimize: performance, energy/power, soft/hard fault resilience, security, yield, cost, ... ree-space, mono-iayet, multi-iayer : 3 3 — 3 3 é % 3 — 3 .
Py - = New cross-layer (device, circuit, system) techniques : Temperature : = DRAM and cache/scratchpad memory optimizations
) @ e el ) Run-time multi-objective adaptation: app degree-of = To overcome crosstalk and variation uncertainty ?oR """ e R_’ﬁSh:ﬂmtrR ?oRn """ . R?? = DRAM refresh overhead reduction (new massed/crammed refresh techniques)
’fum;; -% /ﬁ = e - - * I 1 1 H H _ n n-1 4 hg 2 Iy aveleng n 1 4 Ry Ry Ry . . . .
@ore e D I e parallelism (DoP), mapping, routing, ECC, DVFS, ... " New photonic arbitration, encoding, flow-control protocols » Scratchpad data placement (static and adaptive packing strategies)
| e r( — = New off-chip CPU-memory photonic architectures = Hybrid SRAM/NVRAM cache architecture design; policy configuration
p i, l P s bl | "' | ,x n,.mﬁ — - A CLUSTERO __nopE1e Temperature of __Sc_hidglgr_ o | . Y P T e
W partitioning b | eomainss ) ppp. 7 T Runtime DS power, reliability, and im -’-‘. Cores from | } ] Powot | Fems ' . . : Offclp oupl
7 | Mmrmm“ | arrival =zl ‘:::’::;::i':'g" performance constrained D T E;:?;omc L Is) Thermal Sensors | AWDTM - % » 5ol e e _ I - 1:\ - » Coupler
A * : I R r{ w.':,:';:‘::') il - |* EF’ P Qvdd o et e " S (" Ge ) | | |E : 60| i | Eag:t,'l‘im | T e T T el T
Q“_‘u;)_’ Sencrate Vishape fbrary \ S S Service-queue - ram;m' - ’/R“ Ep"‘s Runtime process LR e e z (77T 0 - o ' A L___,_h_ _c|_I % pelt — " ense : : : :
iz % ‘—J ’D,:, ’ T N aget o ) L e ~ e £ 3| 29 - Laser ssighment Thread Migration % 40 — Saved Cycles —“i ,.,:,m:,-t ﬁ} B [WHF :
\ "a"a ; o 4 a aging profile ﬁ i i 2 Gy 2 ; o,k a2 B0,sa28  Bank-level parallelism ( + | iy 5 ‘Gs | | *Serializer ulfers .
+ "’ :"I“ﬂoﬂ k' Powe dan:;li)l:pai::\g'::i;lra.ble :‘;A'[-:p-z\}\\\\:‘:ﬁ { g; gr';p::edsl;:fm F.':O:t:;::lc::g; Y= e - Ejz 2 Active 9 E . = = 201 == L0, R13824 guh:rray-leml rialallrflrfrnT;LP] for refresh : Bus /_\ | = ':;irlglf\lu:lnlulun I — e " :
e o m" applicationDaPeto ). - -\ “a e ' }f'é'-'frll & ——- - | . i — |
configuration g : o . S — _ ! o - M "'—'..F.- 0"2Gb 4Gb _8Gb 16Gb 32Gb 64 Gb ENESYTe ! ' Control & |} bl |
L @_T modl pt-m:::v:trl.:lz:;;"ste <N 7 ,j’ Ij’ e g 75/1 \3 5 % :7 ﬂ- :/ (/;.': 0-, -7" MR Device capacity | lnknnul tRFC for Crammed R po—— Power Delivery 1_{4 — I5% i
es S = o  Saved Cyclas r-\“b ’ ulfers :
"‘"”“ 7 Tsvs +- 7 7 ulm'.-w"fﬂ"vfu!'— Group . il ¥ = = _—
. i . “ - y ------ . . olonic N '_'_\ T 'nntml : :
DESI-IE (il o A ! Heat sink - ©‘. .. (O T 0T 0T 02 memal = Photonic DRAM to CPU architectures Wi ﬁE[ | Desriir foner peliens |
objective optimization (_ solution or a Pareto optimal - (A A &y ! v, . . . | |7 | Predoodens .
w s Bulk Sikcon and Heat Sink / NODESS _CLUSTER? Sensors = Faster transfers to support high density main memory SUOT—— I ———

= Vehicles are controlled by distributed, real-time embedded systems = Many embedded systems use cloud computing = Energy demands and capabilities of “smart” mobile devices are
= Hundreds of embedded controllers/devices and millions of lines of code = Major challenge in designing datacenters that Increasing rapidly with growing mobile app complexity
= Connected by multiple, diverse network protocols _—_ 2 support cloud computing as well as supercomputers e But battery technology is lagging behind and is expected to continue to be a limiting

factor for future growth of mobile devices such as smartphones

= Challenge: | o | that solve large scientific problems: need for T . o | |
= Meet real-time computation and communication requirements £ o : * How to intelligently manage energy and improve battery lifetime for mobile devices?
= Prevent security breaches (tampering, snooping, ...) energy-e Icient operatlon
= Support advanced driver-assistance systems (ADAS) = Energy costs today ~ $1M/year/petaflop Mobile Applications
= Jitter and security-aware automotive network design __ pewm e = Cannot sustain such costs at exascale! &2 W ™8
* Dynamically adapt to unpredictable performance jitters (delays) e = How can we reduce energy costs? s
* Prevent security breaches with lightweight key management protocols Eerne y AURA Runtime
e Adapt to heterogeneous network types CAN, FlexRay, TTEthernet, ereless o _ _ oot Monitor
- . = Energy Efficient and Stochastically Robust Resource Allocation |
» Workload and system uncertainty modeling o e ;EEV.TT o sayesianApp | | power — App Profil
= Model uncertainty in execution time, network ™, — S Classifier Manager ’| Database
transfers, data access, and GPU offloading ¢ // S . $=
. . .. S [ st finishing probability of Operating System (And I'Old)
Quantify task and machine heterogeneities : ==\
in real W0r|d HPC SyStemS : L X CPU m:g;ilsss Display || Sensors
= Analysis of thermal and energy dynamics Hardware
. " o o . = Real time thermal analysis _ _ I
= Advanced driver assistance system (ADAS) algorithms and prototyping « Adapting thermal setpoints 4 :w,rr“ ’y l » AURA middleware for CPU/back“ght energy optimization
* Enable autonomous vehicles: design robust vehicle/pedestrian/traffic-light/sign/lane detection algorithms pting : _ P wu . ' *  Predicts idle periods (perceptual, cognitive, motor) during user-app interactions
L Ullize storeo vision chmeras, and other data from: LIDAR, RADAR, vehicle-to-vehicl, vehicle-to-ifrastructure © Characterize cooling energy & costs : Bayesian classification of mobile apps at runtime based on user-device interactions
! ' ! ! il ! el ' = Smart resource allocation algorithms e Markov Decision Process (MDP) based algorithms to control:

* dynamic voltage/freq. scaling (DVFS) for CPU energy saving during idle periods

. . . ) .
Workload, data, and storage allocation pOIICIeS to co-optimize * Dbacklight level (and energy) reduction based on theory of human change blindness

robustness, performance, and cooling/compute energy e Power model based on real measurements of various Android OS-based smartphones
= Based on uncertainty models and thermal/energy analysis * Avg. energy savings of 29% vs. default Android scheme; 5x over prior work; no QoS impact
. » Validation on diverse scientific applications and real world tera- - -
= Solar energy harvesting can power many loT and embedded systems and eta-scale S stems At NCAIngOE/ORNL and CSU = Context-aware cloud offloading, wireless data transfers, and
e How to schedule software applications on multicore platforms under variant p _ outdoor location sensing
and stringent energy harvesting conditions that often exist at runtime? ., srnerstysms st empersterone e Reduce energy for data transmission and outdoor location sensing on mobile devices
* How to cope with thermal spikes and faults arising at runtime? AN ) * Use software-based machine learning techniques to learn usage of data and location
= Run-time harvesting-aware scheduling framework L ] interfaces to determine optimal interface selection, ON/OFF schedule, configuration
£ * Linear discriminant analysis, linear logistic regression, Non-linear logistic

e Dynamically enables/disables cores, scales voltage/frequency to manage energy ; N | H _ | | |
regression with neural networks, k-nearest neighbor, Support vector machines

* Proactively throttles cores to manage temperature _ : - - -
. | 25 u . - . . . L .. . .
* Distributes and dynamically reassigns software to maximize core utilization A/ I TR Another major Cha”enge_' ensuring fault-resilient operat|(|)n e Use similar technigues to determine when it is beneficial to compute in cloud vs. device
A P " Exascale HPC systems will experience a fault every few minutes!  Up to 85% energy savings vs. default Android scheme; 24% savings over prior work
> Energy Flow == Information Flow ) . = How to quickly and effectively recover from frequent faults?
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= Medical and rehabilitation centric embedded systems * Mobile robotic embedded systems = Hexapod sensing, fire

e Inverted pendulum based monitoring and rescue

e . : = Energy-efficient and accurate indoor location sensin
‘ | wheelchair for quadriplegics . - - '—Z'g‘i\ép‘sbegzz;‘sa'lssfglnaiggvrvoa?de assistance robot gy 0

* Indoor location sensing is difficult due to lack of GPS signals in indoor environments

* Current techniques are energy-hungry, lack accuracy, and are very infrastructure dependent

* Can use Wifi/UWB/cellular fingerprinting and inertial sensors to predict location indoors

* Use machine learning techniques (LearnLoc) together with fingerprinting and inertial sensing
(dead reckoning) to improve prediction accuracy and save energy

* Critical for search-and-rescue during emergency scenarios (e.g., cave-ins in mining)

NASA Symposium 1st Place Award

ete wireless
hacking drone

Solar powered and )
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networked tebrraln z L LARRY autonomous retrieva
mapping robots 2012 CSU E-days 15T Place Award

. Other embedded applications

Interactive gunar
trainer

5 Augmented and virtual reallty
.. games for rehabilitating victims of

stroke, cerebral palsy, and traumatic

brain injury with motor disabilities

Brain controlled
wheelchair

Mimicking robot to aid
motor and speech
development in children
with impairments

Smartphone
Laser engraving controlled .
system briefcase lock |

Graduate Students

Brain controlled
smart home, with
virtual reality training

= Current: Sai Chittamuru, Ishan Thakkar, Daniel Dauwe, Yaswanth Raparti, Vipin Kukkala, Saideep
Tiku, Shoumik Maiti, Greg Kittilson, Ninad Hogade, Yahav Biran, Chris Langlois, Varun Kilenje,
Swapnil Bhosale, Ayush Kumar, Jordan Tunnell, Zemin Tao, Rohit Kudre, Rohan Jhaveri

= Alumni: Shirish Bahirat, Yong Zou, Yi Xiang, Nishit Kapadia, Mark Oxley, Brad Donohoo, Pramit

- Rajakrishna, Miguel Salas, Tejasi Pimpalkhute, Viney Ugave, Eric Jonardi, Yuhang Li, Srinivas
Smartphone based —— Desai, Haneet Mahajan, Aditya Khune, Onkar Gulvani, Jiabao Jin, Manoj Kumar, Sai Kiran, Nanda
automotive control platform Smart mirror Kumar, Taylo Santiago, Surya Vamsi Vemparala, Jingjie Zhu

Low-cost wireless

cost wirel { RFID and Wi-Fi ik
medical imaging r  §

based home
security system
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